Incremental Construction of LSTM Recurrent
Neural Network

Sabrine Ribeiro René Alquézar
Universitat Politécnica de Catalunya
Departament de Llenguatges e Sistemes Informatics
Campus Nord, Jordi Girona Salgado, 1-3, C6-201,
08034, Barcelona, Espaiia.
{eslopes,alquezar}@lsi.upc.es

Abstract

Long Short-Term Memory (LSTM) is a recurrent neural network (RNN)

that uses structures called memory blocks to allow the net remember
significant events distant in the past input sequence in order to solve
long time lag tasks, where other RNN approaches fail. Throughout this
work we have performed experiments using LSTM networks extended with
growing abilities, which we call GLSTM. Four methods of training grow-
ing LSTM have been compared. These methods include cascade and fully
connected hidden layers as well as two different levels of freezing previous
-weights in the cascade case. GLSTM has been applied to a forecasting
problem in a biomedical domain, where the input/output behavior of five
controllers of the Central Nervous System control has to be modelled.
We have compared growing LSTM results against other neural network
approaches, including our previous work where conventional LSTM was
applied to the task at hand.

1 Introduction

In this work, the application of four growing methods are studied to improve the
learning of a recurrent neural network (RNN) called Long Short-Term Mem-
ory (LSTM) in signal prediction tasks. LSTM is a recurrent network that uses
structures called memory blocks to allow the net remember significant events
distant in the past input sequence in order to solve long time lag tasks, where
other RNN approaches fail. LSTM have been quite successfully applied to stan-
dard benchmarks related to classification problems [GS00b, HS97], and more
recently to signal forecasting problems [RA01, GS00a).

A key issue in neural network (NN) design is determining the number of
hidden units required to perform input/output mapping with satisfactory per-
formance. In recent years, attempts have been made to build NNs incrementally

171

172

S. Ribeiro and R. Alquezar

in an automatic way. The techniques used to solve this problem are called con-
structive or growing methods.

Growing methods are designed to automate the process of determining the
network topology, by modifying both the weights and connectivity of the net-
work during learning. Thus, these methods eliminate the need to guess the
network size what makes the use of NNs more user—friendly.

In the latest years a great deal of effort has been directed towards finding
efficient growing algorithms [KY97]. Many RNN growing methods have been
proposed. The Dynamic Node Creation [Ash89] is a method that adds a new
hidden unit when the average error curve begins to flatten out too quickly. A
more sophisticated method in order to train the network that uses sophisti-
cated nonlinear least squares and quasi-Newton optimization techniques can be
found in [Bel94]. In [HRM*94] an approach called Projection Pursuit Learning
Network is modelled as a one hidden layer Multi-layer perceptron that learns
neuron by neuron, and layer by layer cyclically after all the training patters are
presented. The most used neural network growing method is the Cascade Cor-
relation (CC) [Fah91], that combines two key ideas. The former is the cascade
architecture, in which hidden units are added only one at a time. The latter
is the learning algorithm, which create and installs the new hidden units by
maximizing the correlation of their outputs with the residual error. In [GAP98]
a sequential orthogonal approach to the building and training of single hidden
layer neural networks is described. A more recent method called Sequential Ap-
proximation with Optimal Coefficients and Interacting Frequencies [RA02] has
been reported that combines two key ideas. The first one is the optimization of
the coefficients (or output layer weights), which provide the linear part of the
approximation. The second one is the flexibility to choose the frequencies (or
hidden layer weights), which provide the non-linear part.

Regarding to RNNs the most popular growing method used up to now is the
Recurrent Cascade-Correlation (RCC) [Fah91] which builds an architecture that
adds recurrent operation to the Cascade-Correlation architecture. Therefore, in
RCC each hidden unit is provided with a single weighted self-recurrent link
that feeds back its own activation value on the previous time step. As an
alternative to the original RCC architecture, [KTA95] introduced the Parallel-
modular RCC that is trained with natural connectionist glue, which is a concept
for modularity and scaling in large phonemic neural networks [AW90, KL90).
Another more recent effort attempting to learn weights and topology of neural
nets is the work of Angeline [ASP94]. The GeNeralized Acquisition of Recurrent
Links Algorithm is an evolutionary algorithm that non-monotonically constructs
recurrent networks to solve a given task.

Throughout this work we have performed experiments using LSTM net-
works extended with growing abilities, which we call GLSTM. Four methods of
training growing LSTM have been compared. GLSTM has been applied to a
forecasting problem in a biomedical domain, where the input/output behavior
of five controllers of the Central Nervous System control has to be modelled.
We have compared growing LSTM results against those reported in (BVA9S8]
using other NN approaches and our previous work applying conventional LSTM

Incremental construction of LSTM recurrent neural network

[RAO01] to the task at hand. '

In the following section we describe the LSTM architecture. In section 3 we
introduce the growing LSTM approaches. In section 4 we show the case of study.
In section 5 the experimental methodology used is described. In section 6 the
obtained results are presented. Finally, some conclusions are given in section 7.

2 " LSTM Recurrent Neural Network

LSTM [HS97] belongs to a class of recurrent networks that has time-varyihg
inputs and targets. That is, points in the time series or input sequence are
presented to the network one at a time. The network can be asked to predict
the next point in the future or by classify the sequence or to perform some
dynamic input/output association. Error signals are either generated at each
point of the sequence or at the end of the sequence.

2.1 LSTM Structure

A fully connected LSTM architecture is a three-layer neural network composed
of an input layer, a hidden layer and an output layer. The hidden layer has
a feedback loop to itself, i.e., at time step t of a sequence with n time steps,
presented to the network, the hidden layer receives as input the activation values
of the input layer and the activation values of the hidden layer at time step t—1.
Fig. 1 illustrates a LSTM with a fully connected hidden layer consisting of two
memory blocks, each one consisting of two cells. The LSTM showed has an
input dimension of two and an output dimension of one. Only a limited subset
of connections are shown.

Figure 1: Example of LSTM net consisting of 4 inputs units, 1 output unit and
2 memory blocks of size 2. Only a limited subset of connections are shown.

The basic unit in the hidden layer is known as a memory cell block. A
memory cell block (Fig. 2) consists of S memory cells and three multiplicative
gates, called the input gate. output gate and forget gate. Each memory cell
has at its core a recurrently self-connected linear unit called Constant Error

173

e

174

S. Ribeiro and R. Alquezar

Carousel (CEC), whose activation is called the cell state. The CECs solve the
vanishing error problem: in the absence of a new input or error signals to the
cell, the CEC’s local error back flow to remains constant, neither growing nor
decaying. Input and output gates regulate write and read access to a cell whose
state is denoted S.. The CEC is protected from both flowing activation and
backward flowing error by the input and output gates respectively. When gates
are closed (activation around zero), irrelevant inputs and noise do not enter the
cell, and the cell state does not perturb the remainder of the network. The
forget gate feed the self-recurrent connection with its output activation and is
responsible for do not allow the internal state values of the cells grow without
bound by resetting the internal states S, as long as it needs. In addition to
the self-recurrent connection, the memory cells receive input from input units,

other cells and gates.

Sc=s.y®+gy . =M —nety
memornag ond forgetmg : Jorgel gute
in e
manland gy H—-—.L__ﬂ net;,
npui gase

ikpetogatng g(netc)

Figure 2: The standard LSTM cell with a recurrent self-connected connection
and its respective gates.

While the cells are responsible for maintaining information over long periods
of time, the responsibility for deciding what information to store, and when to
apply that information lies with the input and output gate units, respectively.

A single step involves the update of all units (forward pass) and the com-
putation of error signals for all weights (backward pass). The equations that
describe the dynamics of the LSTM network can be found in [7).

2.2 Learning

LSTM's backward pass [HS97] is basically a fusion of slightly modified truncated
back-propagation through time (BPTT) [WP90], which is obtained by truncat-
ing the backward propagation of error information, and a customized version
of RTRL [RF87] which properly takes into account the altered (sigma-pi-like)
dynamics caused by input and output gates (see details in [HS97]).

Incremental construction of LSTM recurrent neural network

Output units use BPTT; output gates use a truncated version of BPTT.
However, weights to the cells and forget gates use a truncated version of RTRL.
Truncation means that all errors are cut off once they leak out of a memory cell
or gate, although they do serve to change the incoming weights. The effect is
that the CECs are the only part of the system through which errors can flow
forever. So, the error signals flowing out of the CEC and the multiplicative gates
- are truncated after they are used to update the incoming, weighted connections.

3 Growing LSTM

Aiming to improve the learning abilities of LSTM neural net, this work deals
with a version of LSTM where the network topology is incrementally adapted
by adding new memory blocks. We call this version Growing LSTM (GLSTM).

In growing algorithms, many heuristics can be used to guide the search
in the possible solution space. An important problem is how to set the weight
connections of a newly added block. LSTM starts training with just one memory
block and grows by inserting blocks, one at time, on the hidden layer in two
basic ways: cascade and fully connected, that are discussed posteriorly.

In both architectures, each new memory block receives a connection from
each of the network’s original inputs. However the connections that comes from
other blocks changes according to the architecture used. Every new block has
the same number of cells than the first initial block. :

3.1 Cascade Growing LSTM

In the recurrent cascade architecture, the new units are added one at a time
and each new unit receives inputs from every preexisting units and also from
itself. Thus, carrying out this concept on LSTM, each new memory block in
addition to have a self-connect connection will also receives a link from each of
the network’s original inputs and also from every memory cell on preexistin
blocks, as can be seen in Fig. 3. K

Figure 3: Cascade growing. Whereas in (a) all preexisting weights are frozen,
in (b) only weights arriving at already existing blocks are frozen, letting the
hidden-output weights free.

In this work, the weights arriving and leaving from the memory blocks were

175

176

S. Ribeiro and R. Alquezar

frozen in two different ways. In the first one, all the preexisting weights in the
whole net were frozen, leaving only the new block weights to be trained. In the
second way, previous weights were frozen except for those of the output units,
that remained trainable.

Fig. 3 illustrates these two configurations. In both, it can be supposed that
there exist just two memory blocks (MB1 and MB2) and a new memory block
(MB3) will be added. For the first configuration (Fig. 3(a)), the weights a-
rriving at already existing blocks (MB1 and MB2) are kept frozen (solid lines)
and those arriving at new memory block (MB3) are trained repeatedly (dashed
lines). The output unit weights are configured in a similar way. In the second
configuration (Fig. 3(b)) the same procedure is carried out, but now all hidden-
output weights are modified during subsequent training.

A third configuration, not shown in the figure, is not to freeze any weight in
the net, so the preexisting weight connections still can be trained further after
the addition of a new memory block.

3.2 Fully Connected Growing LSTM

In addition to the fact that the new memory block receives connections from
every preexisting blocks, as occurs in the cascade architecture, in the fully conne-
cted architecture the preexisting blocks also receives weight connections from
each new added block. As can be seen in Fig. 4 no weight in the net is frozen
during training, since every cell of each memory block receives new connections
after adding a new block.

__.-_::-._::E:.::-.:::i:::::-:'-\;ﬁ ;
e T I
it B i
i S 8 j :
i MBI oo mMB2N i MB3
AR RO SN 'z"_u‘

_Figure 4: Fully GLSTM.

4 Case of Study

The human cardiovascular system is composed of the hemodynamical system
and the Central Nervous System (CNS) control. In this work we try to model
the latter by capturing its input/output dynamic behavior.

The CNS generates the regulating signals for the blood vessels and the heart,
and it is composed of five controllers: the heart rate controller (HRC). the
peripheric resistance controller (PRC). the myocardiac contractility controller

Incremental construction of LSTM recurrent neural network

'
'

L}

)

| o] Peripheric Rest ! !
Comroler ! '

1

)

' H G y Flow | |
| Venocos Tone ! 5 '
' Controller N :
' ! s Caroeid Siane !
: 1 . Biood Pressre '
[l C y Rosi :
' Coctroller I ! 1

Figure 5: Simplified diagram of the cardiovascular system model, composed of
the hemodynamical system and the CNS control.

(MCC), the venous tone controller (VTC), and the coronary resistance controller
(CRC). A simplified diagram of the cardiovascular system is shown in Fig. 5.
All of these controllers are single-input/single-output (SISO) systems driven
by the same input variable, namely the carotid sinus pressure. Although the
Carotid Sinus Pressure is not easily measurable, it can be extracted from the
differential equation model describing the hemodynamics of the cardiovascular
system [Val93]. The five output variables of the controller models are not even
amenable to a physiological interpretation, except for the heart rate controller
variable, which is the inverse heart rate, measured in seconds between beats.

Whereas the structure and functioning of the hemodynamical system are
well known and a number of quantitative models, mostly based on differential
equations, have been developed, the functioning of the central nervous system
control is of high complexity and still not completely understood. Although
some differential equation models for the central nervous system have been
postulated [SS74], these models are not accurate enough, and therefore, the
use of other modelling approaches like neural networks may offer an interesting
alternative for capturing the behavior of the CNS control [LK90].

5 Experimental Methodology
5.1 Prediction Strategy

Prediction tasks involve the use of currently available input and output points
to predict a future output point, i.e., given two finite sequences z(1), z(2), z(3),
...+z(t) of input signal values and y(1), y(2),¥(3), ..., y(t — 1) of output signal
values, predict the value y(t — 1 + T) of the output signal.

To prepare the data conveniently, we have replaced the original target output

177

178

S. Ribeiro and R. Alquezar

y(t) by the difference between the y(t) output value and the previous value
y(t — 1) multiplied by a scaling factor fs, so that the target is calculated as
to(t) = fs*(y(t) — y(t — 1)) = Ay() * fs. fs scales Ay(t) between —1 and 1.

Stepwise and iterated predictions are made. In single-step prediction the
network predicts the next output point, y(t), after being fed with the current
input z(t) and the last known value of the output, y(t —1). In this case, T = 1.
It should be noted that, both the inputs and the desired response are provided
from the known training points.

During iterated prediction with T = n the output is clamped to the y—input
and the predicted values are fed back n times, i.e. the y—input samples are
progressively substituted by the output of the network. This closed loop system
is illustrated in Fig. 6. ‘

LS &y
D) s o5
r | LSTM @0 B QD

Figure 6: Setup for the output signals.

5.2 The Data

The data used in the training and test phases are composed of the five controllers
mentioned in §4: HRC, PRC, MCC, VTC and CRC, that were recorded with a
sampling rate of 0.12 seconds from simulations of a purely differential equation
model. This model had been tuned to represent a specific patient suffering
from coronary arterial obstruction, by making the four different physiological
variables (right auricular pressure, carotid pressure, coronary blood flow, and
heart rate) of the simulation model agree with the measurement data taken
from the patient. '

The training set consists of 1,500 data points for each controller. Each
trained network was validated by using it to forecast six data sets that had
not been employed in the learning process. Each one of these six test sets (for
each controller), with a size of 300 points each, contains signals representing
specific morphologies, allowing the validation of the model for different system
behaviors.

5.3 Experimental Setup

The GLSTM network architecture used is made up of an input layer with 2
inputs units, an output layer with 1 output unit and a hidden layer consisting
of memory cell blocks of size 1. A new memory block is added to the hidden
layer when the previous configuration has been trained at least 1000 epochs and
the mean of the error in the last 10 epochs has not improved the previous error

Incremental construction of LSTM recurrent neural network

mean up to 15 memory blocks or a maximum number of epochs, which depends
on the task.

After preliminary experiments, the bias weights for input and output gates
in successive blocks were fixed as: —0.5, —1.0, —1.5, and so forth. The initia-
lization of output gates pushes initial memory cells activations towards zero,
whereas that of the input gates prevents memory cells from being modified
by incoming inputs. As training progresses, the biases become progressively
less negative, allowing the serial activation of cells as active participants in the
network computation.

- The forget gates were initialized with symmetric positive values: +0.5 for
the first block, +1.0 for the second, +1.5 for the third, and so forth. The
bias initialization must be positive in this case, since it prevents the cells from
forgetting everything [GS00a).

For the cell’s input squashing function g different configurations were used,
depending on the controller. More specifically, for the HRC and CRC training
sets the antisymmetric logarithm function [Alq97) was used, whereas for VTC,
MCC and PRC controllers g was the logistic sigmoid in [—1,1]. As regard to
the output squashing function h and the activation function of the output unit,
they were fixed as the linear identity function.

After some preliminary experiments, the number of epochs chosen to stop
training was 5000 for HRC, MCC and VTC controllers, 2500 for PRC and 2000
for CRC control. The learning rate has been changed according to the dataset to
be learned, but, in essence, it took on values from 0.01 to 0.025. The momentum
parameter for each controller was 0.0 for HCR, PRC and CRC training sets and
0.5 for VTC and MCC training sets.

The error measure is given by the normalized mean square error (NMSE),
in percent, between the predicted output value and the target value, y:

E[(y(t) — §(t))?
NMsE < El®) - 5)%) . 100%)
Yvar
where y,,,, is the variance of y. During training, the above NMSE error is used
to determine when to finish the learning process, as explained earlier.

6 Results

In this section, two kinds of analysis are carried out. In the former, comparisons
among different growing architectures are made and in the latter, GLSTM’s
results obtained throughout the present study are showed and compared with
those reported in previous studies on the same task using neural net approaches.

Table 1 displays the outcomes obtained by each controller on the training
and test set using the different growing architectures and configurations (see
83). Fully stands for fully connected growing without freezing weights. In order
to investigate the effects of freezing weights, we tested three different choices for
cascade growing LSTM. Cascade Freezing refers to the configuration illustrated
by Fig. 3(a), Cascade Not-Freezing refers to growing cascaded without freezing

179

180

S. Ribeiro and R. Alquezar

{ Cascade Cascade Cascade
Fully Freezing Not-Freezing | Trainable-Out
Train | Test | Train | Test | Train | Test [Train | Test

HRC | 485 | 399 | 309 | 411 | 326 | 415 | 211 | 327 |
PRC | 012 | 0.69 | 013 | 066 | 0.17 [133 | 0.09 | 0.61
MCC | 039 | 111 | 014 [099 [011 102 | 009 | 0.98
VTC | 008 | 096 | 0.10 | 096 | 018 | 105 | 0.08 [096
CRC | 022 | 037 | 011 [035 | 018 [038 | 009 | 026

Av. | 135 | 142 | 071 [141 [078 | 158 | 048 [121

Table 1: Average of three trials NMSE errors (in percent) for training and test
sets of each controller using different growing architectures.

any weights, and Cascade Trainable-Out refers to Fig. 3(b) scheme. The results
showed are the average of three different training trials using different initial
random weights. As it can be seen, the results achieved by Cascade Trainable-
Out is far better than those obtained by the other configurations. From now
on, GLSTM results this configuration.

Next, refer to the outcomes accomplished in [RA01], which applies LSTM to
the task at hand, are used as a baseline to illustrate GLSTM improvements on
LSTM. Moreover, the results reported in [BVA98] are also recalled for compar-
ison purposes. In [BVA98| four different approaches were performed over the
task at hand, where three of them are TDNNs [KL90, HKP91] that differ in
the training method used: a standard backpropagation algorithm (TDNN-BP),
a hybrid procedure composed by repeated cycles of simulated annealing cou-
pled with conjugate gradient algorithm (TDNN-AC), and a genetic algorithm
(TD-HNN). This last network uses indeed a different neuron model based on a
similarity computation. The other one is a RNN approach, an ASLRNN net,
similar to Elman’s SRN net, except that is trained by a true gradient descent
algorithm that does not truncate error propagation backwards in time.

Concerning to stepwise prediction results, Table 2 shows the average NMSE
errors (in percent) of each of the above mentioned architectures against those
yielded by GLSTM. For each controller, three different training trials using
different random weight initialization in the range [~0.1,0.1] were carried out.
The net built in each trial was applied to the six test sets associated with the
controller.

In order to compare the long-term prediction results. where the whole test
set is attempted to be predicted (T = 300). Table 3 shows the average NMSE
errors for different dynamic input/output architectures of three independent
training trials for the six test sets of each controller. As can be seen. GLSTM
(I)‘lé?ll?;rforms in most cases those results achieved by ASLRNN. TDNN-BP and

L

Finally. Fig. 7 shows the error curve of LSTM trained with 1, 2 and 3
memory blocks and LSTM trained with cascade growing method (GLSTM) for
the HRC controller. The black points showed in the graph indicate the epoch
in which a new memory block was added to the net. As it can be observed,

Incremental construction of LSTM recurrent neural network 181

TD-HNN | TDNN-BP | TDNN-AC | ASLRNN LSTM GLSTM
Train | Test | Train | Test | Train| Test Train | Test [Train [Test Train | Test
HRC [0.11 |0.18 [1.15 [1.52 [0.15 [0.13 [1.63 [1.91 2.16 |3.41 | 2.11 [3.27
PRC | 0.09 |0.12]0.94 |1.27 |0.26 [0.14 [0.84 [1.10 [0.25 0.65 | 0.09 |[0.61
MCC| 0.03 [0.06 |0.81 |1.33 | 0.09 | 0.08 [0.71 [1.18 0.19 (1.04 | 0.09 [0.98
VTC|[0.03 [0.06 |0.81 [1.33 |0.09 [0.08 [0.71 [1.18 0.19 {1.01 [0.08 [0.96
CRC|0.10 [0.11 | 0.47 [0.66 | 0.03 | 0.04 [0.41 [0.53 0.18 [0.31 [0.09 [0.26
Av. [0.07 JO.11[0.84 [1.22 | 0.12 [0.09 |0.86 [1.18 050 [1.28 10.48 1121

Table 2: Average NMSE errors (in percent) for step-wise prediction on training
and test sets.

| [TODNN-BP_| ASLRNN | LSTM | GLSTM |
r Data Set 1 24.31 78.25 32.81 2552 ||
Data Sect 2 7.47 8.62 28.66 21.36
[| HRC [DataSet3 13.48 16.77 28.40 19.52
Data Sct 4 6.87 8.16 23.25 19.23
Data Sct 5 32.12 38.24 31.70 24.73
Data Set § 7.86 9.80 27.86 33.96
Average Error 15.35 18.31 28.78 24.05
Data Set 1 58.15 50.07 12.30 6.68
Data Set 2 17.80 16.11 17.29 6.55
PRC Data Sct 3 41.56 36.89 12.15 6.53
Data Set 4 29.09 26.97 7.15 35.00
Data Set 5 34.73 38.54 21.15 71.47
Data Sct 6 21.22 18.40 14.22 5.48
Average Error 33.76 31.16 14.04 21.95
Data Set 1 41.72 55.83 27.48 17.16
: Data Set 2 20.92 17.18 42.88 26.26
MCC | Data Set 3 40.22 35.60 26.26 17.60
Data Set 4 39.80 42.08 14.44 33.88
Data Set 5 34.32 36.87 16.15 19.27
Data Set 6 27.20 23.38 30.91 20.01
Average Error 34.04 35.16 26.35 22.36
Data Set 1 41.68 54.25 27.01 11.36
Data Set 2 20.90 16.93 35.43 9.99
VTC | Data Sect 3 40.22 35.68 10.16 10.02
Data Sct 4 39.80 41.86 14.58 32.37
Data Set 5 34.41 36.77 15.50 40.19
Data Set 6 27.22 23.12 29.90 9.41
Average Error 34.04 34.77 22.02 18.89 J
Data Set 1 147.73 148.65 3.70 6.67
Data Set 2 28.35 36.17 4.63 15.75
CRC | Data Set 3 84.35 83.75 3.00 4.29
Data Set 4 4.69 4.49 5.48 .6.59
Data Sct 5 56.20 58.50 72.29 44.01
Data Set 6 12.32 11.16 2.99 4.64
| Avcrage Error 55.69 57.12 14.73 13.65

Table 3: Average NMSE errors for long-term prediction

182

S. Ribeiro and R. Alquezar

GLSTM finds a certain stability by adding memory blocks incrementally and
keeping previous hidden-layer weights frozen.

(OLSTM v LATAY

ut e
1 vnide

Senuvursnevaed
v T

1

Figure 7: GLSTM vs. LSTM prediction.

7 Conclusions

The need to fix the size and topology of a network before its training phase
is one of the most important practical problems when using common neural
network approaches. Therefore, the use of incremental growing methods that
build the network automatically are seen as a practical way of making the use of
neural networks less complex. This is specially desirable in the case of recurrent
neural networks, where the topology can be extremely complex.

Most of the previous work on NN growing methods has dealt with feedfor-
ward NNs and only a few techniques have been proposed for some particular
types of recurrent NNs. In this work, we have studied the incremental construc-
tion of the LSTM net, which is maybe the more powerful RNN architecture
proposed so far. Some different alternatives have been identified and tested on
a signal forecasting task concerning the learning of models for the Central Ner-
vous System Control. These include cascade and fully connected hidden layers
as well as different levels of freezing previous weights in the cascade case.

It has been shown that, in addition to remove the need to fix the number of
hidden units in advance, the growing LSTM can yield a better performance both
in the training and test phases. Moreover. the behavior of the error minimization
during the training phase appears to be more stable when using Growing LSTM
with frozen weights. :

Nevertheless, the experiments carried out here need to be complemented
with new studies on many other different problems. In addition, the final ob-
jective of our work is not only to build LSTM nets incrementally. but rather
to develop a methodology for the incremental construction of recurrent NNs
for prediction tasks that can combine LSTM units (memory blocks) with other
RNN architectures or even with Time-Delay Neural Networks. The underly-
ing idea is to build a RNN as simplest as possible for a given problem and
only adding more sophisticated elements (such as LSTM memory blocks) in a

Incremental construction of LSTM recurrent neural network

183

parsimonious way when strictly required to improve the approximation and/or
generalization performance.

References

[Alq97]

[Ash8&9]

[ASP94]

[AW90]

[Bel94)
(BVA9S]

[Fah91]

[GAPYS]
[GS00a)]
[GS00b)

[HKP91]

[HRM*94]

R. Alquézar. Symbolic and Connectionist Learning Techniques for
Grammatical Inference. PhD thesis, Technical University of Catalo-
nia, 1997.

T. Ash. Dynamic Node Creation in Backpropagation Networks.
Connection Science, 1(4):365-375, 1989.

P.J. Angeline, G.M. Saunders, and J.B. Pollack. An Evolution-
ary Algorithm that Constructs Recurrent Neural Networks. /EEE
Transactions on Neural Networks, 5(1):54-64, 1994,

K. Shikano A. Waibel, H. Sawai. Consonant Recognition by Modular
Construction of Large Phonemic Time-Delay Neural Networks. In
Proc of the Int. Conf. on Acoust, Speech, and Signal Processing,
volume S3.9, pages 112-115, 1990.

M.G. Bello. Enhanced Training Algorithms, and Integrated Train-
ing/Architecture Selection for Multilayer Perceptron Networks.
IEEE Transactions on Neural Networks, 3(6):864-875, 1994.

L. Belanche, J.J. Valdés, and R. Alquézar. Fuzzy Heterogeneous
Neural Networks for Signal Processing. In Proc. of Int. Conf. of
Artificial Neural Network, 1998.

Fahlman, S.E. The Recurrent Cascade-correlation Architecture. Ad-
vances in Neural Information Processing Systems, 3:190-196, 1991.

A.H. Gee, S.V.B. Aiyer, and R.W. Prager. A Sequential Learning
Approach for Single Hidden Layer Neural Networks. Neural Com-
putation, 11:65-80, 1998.

F.A. Gers and J. Schmidhuber. Applying LSTM to Time Series
Predictable Through Time-Window Approaches. Technical Report
22-00, IDSIA, 2000. :

F.A. Gers and J. Schmidhuber. Recurrent Nets that Time and
Count. In Proc. of the Int. Joint Conf. on Neural Nelworks, page
273, Como, Italy, 2000.

J. Hertz, A. Krogh, and R.G. Palmer. Introduction to the Theory of
Neural Computation. Addison Wesley, Redwood City, CA, 1991.

J.N. Hwang, S.R. Ray, M. Maechler, D. Martin, and J. Schimert.
Regression Modelling in Backpropagation and Projection Pursuit
Learning. IEEE Transactions on Neural Networks, 5(3):54-64, 1994.

184

[HS97]

(KL90]

[KTA95)

[KY97]

[LK90]

[RAO]]

[RA02)

[RF87)

[5S74]

[Valo3]

[WP90]

S. Ribeiro and R. Alquezar

S. Hochereiter and J. Schmidhuber. LSTM can Solve Hard Long
Time Lag Problems. In M. C. Mozer, M. I. Jordan, and T. Petsche,
editors, Advances in Neural Information Processing Systems, vol-
ume 9, pages 473-479, Cambridge, MA, 1997. MIT Press.

G. Hinton K. Lang, A. Waibel. A TimeDelay Neural Network Archi-
tecture for Isolated Word Recognition. Neural Computation, 3:23-

34, 1990.

I. Kirschning, H. Tomabechi, and J.I. Aoe. A Parallel Recurrent Cas-
cadeCorrelation Neural Network with Natural Connectionist Glue.
In Proc. of the Int. Conf. on Neural Networks, volume 2, pages 953-
956, Perth, Australia, 1995.

T.Y. Kwok and D.Y. Yeung. Constructive Algorithms for Structure
Learning in Feedforward Neural Networks for Regression Problems.’
In IEEE Transactions on Neural Networks, volume 8, pages 630-

645, 1997.

A. Law and D. Kelton. Simulation Modelling and Analysis. McGraw
Hill, New York, 1990.

S. Ribeiro and R. Alquézar. A Comparative Study on a Signal Fore-
casting Task applying Long Short-Term Memory (LSTM) Recurrent
Neural Networks. In VI Simpdsio Ibero-Americano de Reconheci-
mento de Padrées, pages 487-495, Florianopolis, Brazil, 2001.

E. Romero and R. Alquézar. A New Incremental Method for Func-
tion Appoximation using Feed-forward Neural Networks. In Proc.
of the Int. Joint Conf. on Neural Networks, Honolulu, Hawaii, 2002.

A. J. Robinson and F. Fallside. The utility driven dynamic error
propagation network. Technical Report CUED/F-INFENG/TR.1,
Engineering Department, Cambridge University, 1987.

H. Suga and K. Sagawa. Instantaneous Pressure-volume Relation-
ships and their Ratio in the Excised, Supported Canine Left Ventri-
cle. Circulation Research, 53:117-126, 1974.

M. Vallverdi. Modelado y Simulacion del Sistema de Control Car-
diovascular en Pacientes con Lesiones Coronarias. PhD thesis,
Technical University of Catalonia, 1993.

R.J. Williams and J. Peng. An Efficient Gradient-based Algorithm
for on-line Training of Recurrent Network Trajectories. Neural Net-
works. 2:491-501, 1990.

